暨南经院统计学系列Seminar第179期:崔逸凡(浙江大学)

发布者:徐思捷发布时间:2025-10-31浏览次数:11

主题:Learning Robust Decision Rules for Censored and Confounded Data

主讲人:崔逸凡 浙江大学

主持人:刘晓玉 暨南大学

时间:2025115日(周三)上午10:30-11:30

地点:暨南大学石牌校区经济学院大楼(中惠楼)102

摘要

In this talk, we propose two robust criteria for learning optimal treatment rules with censored survival outcomes. The first one aims to identify a treatment rule that maximizes the restricted mean survival time, where the restriction is specified by a given quantile such as the median; the second one focuses on maximizing buffered survival probabilities, with the threshold adaptively adjusted to account for the restricted mean survival time. Moreover, we develop robust treatment rules that enable reliable policy recommendations when unmeasured confounding is present, using the proximal causal inference framework. Simulation studies and real-world applications demonstrate the superior performance of the proposed methods.

主讲人简介

崔逸凡,浙江大学长聘副教授(研究员),博士生导师。北卡罗来纳大学教堂山分校统计与运筹专业博士,曾任宾夕法尼亚大学沃顿商学院博士后研究员、新加坡国立大学统计与数据科学系助理教授。国家级青年人才计划入选者(2021)。


欢迎感兴趣的师生参加!


校对|刘晓玉

责编| 彭毅

初审| 姜云卢

终审发布| 何凌云

 (来源:暨南大学经济学院微信公众号)